MicroRNA profiling links miR-378 to enhanced adipocyte lipolysis in human cancer cachexia.
نویسندگان
چکیده
Cancer cachexia is associated with pronounced adipose tissue loss due to, at least in part, increased fat cell lipolysis. MicroRNAs (miRNAs) have recently been implicated in controlling several aspects of adipocyte function. To gain insight into the possible impact of miRNAs on adipose lipolysis in cancer cachexia, global miRNA expression was explored in abdominal subcutaneous adipose tissue from gastrointestinal cancer patients with (n = 10) or without (n = 11) cachexia. Effects of miRNA overexpression or inhibition on lipolysis were determined in human in vitro differentiated adipocytes. Out of 116 miRNAs present in adipose tissue, five displayed distinct cachexia-associated expression according to both microarray and RT-qPCR. Four (miR-483-5p/-23a/-744/-99b) were downregulated, whereas one (miR-378) was significantly upregulated in cachexia. Adipose expression of miR-378 associated strongly and positively with catecholamine-stimulated lipolysis in adipocytes. This correlation is most probably causal because overexpression of miR-378 in human adipocytes increased catecholamine-stimulated lipolysis. In addition, inhibition of miR-378 expression attenuated stimulated lipolysis and reduced the expression of LIPE, PLIN1, and PNPLA2, a set of genes encoding key lipolytic regulators. Taken together, increased miR-378 expression could play an etiological role in cancer cachexia-associated adipose tissue loss via effects on adipocyte lipolysis.
منابع مشابه
Mechanism of increased lipolysis in cancer cachexia.
Loss of fat mass is a key feature of cancer cachexia and has been attributed to increased adipocyte lipolysis. The mechanism behind this alteration is unknown and was presently investigated. We studied mature s.c. fat cells and differentiated preadipocytes from 26 cancer patients with and without cachexia. Hormone-induced lipolysis and expression of lipolysis-regulating genes were determined to...
متن کاملmiR-378 Activates the Pyruvate-PEP Futile Cycle and Enhances Lipolysis to Ameliorate Obesity in Mice.
Obesity has been linked to many health problems, such as diabetes. However, there is no drug that effectively treats obesity. Here, we reveal that miR-378 transgenic mice display reduced fat mass, enhanced lipolysis, and increased energy expenditure. Notably, administering AgomiR-378 prevents and ameliorates obesity in mice. We also found that the energy deficiency seen in miR-378 transgenic mi...
متن کاملEvaluation of Human Breast Adenocarcinoma (MCF-7) Cells Proliferation in Co-Culture with Human Adipocytes in Three Dimensional Collagen Gel Matrix: Norepinephrine as a Lipolytic Factor
Background: Norepinephrine plays a trophic role in the control of cell replication and differentiation in target cells that express adrenergic receptors. Methods: In this study, we have tested the influence of infraphysiological, physiological and supraphysiological concentrations (0.0001 nM, 1 nM, 10000 nM) of human norepinephrine on the proliferation of breast cancer cells (human breast adeno...
متن کاملThe Role of microRNA in Cancer Cachexia and Muscle Wasting: A Review Article
Almost half of cancer patients experience cachexia syndrome. Cachexic patients are at risk of increased side effects of chemotherapy, reduced tolerance to chemotherapy drugs, longer duration of treatment period, and decreased quality of life. Cancer cachexia is a multifactorial syndrome. Micro ribonucleic acid (miRNA), a “non-coding RNA”, is considered to be a risk factor of cachexia and muscle...
متن کاملEvidence for an important role of CIDEA in human cancer cachexia.
Loss of fat mass in cancer cachexia is linked to increased adipocyte lipolysis; however, the fate of the excess fatty acids (FA) generated by lipolysis is not known. We investigated if the adipocyte-specific gene cell death-inducing DNA fragmentation factor-alpha-like effector A (CIDEA) could be involved. CIDEA mRNA expression was assessed in s.c. white adipose tissue from 23 cancer cachexia pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 306 3 شماره
صفحات -
تاریخ انتشار 2014